Adaptive-Fuzzy-Identification-Based Sliding-Mode Control for Linear Ultrasonic Motor

نویسندگان

  • CHIH-MIN LIN
  • ANG-BUNG TING
  • MING-CHIA LI
چکیده

An adaptive-fuzzy-identification-based sliding-mode control (AFISMC) design method is proposed to control an Linear Ultrasonic Motor (LUSM). Since the dynamic characteristic of the LUSM is difficult to obtain and the motor parameters are time varying, the AFISMC system is derived to automatically adjust the fuzzy rules without using any plant model of the LUSM. In the proposed AFISMC design method, a fuzzy system is utilized to identify the unknown system dynamic function. In addition, an error estimation mechanism is investigated to estimate the bound of approximation error. The experimental results show that the proposed AFISMC design method can achieve favorable control performance for the LUSM. Key-Words:Fuzzy system, Adaptive law, Sliding-mode control, System identification, Lyapunov function, Linear ultrasonic motor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque

In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...

متن کامل

Sensorless Indirect Field Oriented Control of Single-sided Linear Induction Motor With a Novel Sliding Mode MRAS Speed Estimator

This paper proposes a new sliding mode control (SMC)  based model reference adaptive system (MRAS) for sensorless indirect field oriented control (IFOC) of a single-sided linear induction motor (SLIM). The operation of MRAS speed estimators dramatically depends on adaptation mechanism. Fixed-gain PI controller is conventionally used for this purpose which may fail to estimate the speed correctl...

متن کامل

An adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system

In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...

متن کامل

Designing fuzzy-sliding mode controller with adaptive sliding surface for vector control of induction motors considering structured and non-structured uncertainties

Induction motors with nonlinear dynamics are superior in terms of size, weight, motor inertia, maximum speed, efficiency, and cost than direct current machines, and hence their control is of great important. The main objective of this paper is to design a fuzzy sliding mode controller in order to control the position of the induction motor including parametric and non-parametric uncertainties b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010